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Institute of Biomedical Engineering, Universität Karlsruhe, Germany

Abstract— The measurement of the impedance of
biological tissue is a non-invasive method to find new
data of diagnostic relevance. A change in the impe-
dance for example can give a prediction of the healing
process of wounds or of skin irritations [1]. The tradi-
tional way is to apply the current and measure the vol-
tage with electrodes. This leads to stray capacitance
between the electrodes as well as between the ground
and patient at frequencies above 500 kHz. In the pre-
sent report two sensitive systems are presented using
computer simulations which can detect conductivity
gradients. The systems are built up with two coils. In
the first simulation the excitation coil is designed as
a gradient coil to excite a magnetic field and a rec-
tangular coil to measure. In the second simulation a
rectangular coil is used as an exciting coil and a gra-
diometer coil is used to measure. The tissue block is
divided into two halves with different conductivities.
The sensors give no signal with a homogeneous tis-
sue block. In precence of a conductivity gradient, the
systems are sensitive. The main difference of the two
systems is the geometrical arrangement of the eddy
currents.

Keywords—contact-free measurement, electrical im-
pedance, coil systems

I. Introduction

The non-invasive method of measuring the impe-
dance can give information of the electrical characte-
ristics of tissue. In some cases the conductivity gra-
dient can be an important value. The diagnostic in-
strument could be a sensor, that is moved around on
the skin of a patient, in order to detect areas with
impedances that deviate from normal. If the patient
has acute pain it is not possible to touch him, so a
non-contact method must be used. In some applica-
tions (e.g. brain) impedance can hardly be measured
with surface electrodes [2].

The non-contact measurement is based on the
idea, that a time varying magnetic field induces ed-
dy currents in the conductive tissue. These weaken
the fields, so a change in the signal can be detected.
Unfortunately the change in the signal is expected to
be very small, so a high resolution is necessary [3]. In
the present report two sensitive systems are presen-
ted and compared which are detecting a conductivity
gradient.

II. Methodology

An alternating current produces an alternating
magnetic field. This magnetic field can be calculated
using Biot-Savart’s law. If this field passes through a
conducting material eddy currents are induced. The-
se eddy currents will also produce an alternating ma-
gnetic field, which weakens the original field, due to

Fig. 1. Arrangement of the coil system and the tissue block.
The excitation coil is simulated as two coils, the measure-
ment coil is parallel underneath. The tissue is divided into
two halves.

Lenz’s law.
Different geometrical arrangements can be analy-

zed. [4] describes an analytical problem of a cylin-
drical coil with a three layer medium. [5] reduces the
problem using a number of single coils. [6] gives a for-
mula for the change of the signal in the measuring
coil.

In this report a two coil system is used. The first
is used as an excitation coil and the second is used
as a measuring coil. For complex geometries a nu-
merical method of field calculation, for example the
finite integration method, can be used. Using simu-
lations and calculations of different geometrical ar-
rangements and different conductivities an ideal ar-
rangement can be found.

The induced voltage uind now depends on the di-
stances, the geometrical arrangement and the con-
ductivities of the tissue block. The calculation is do-
ne with the finite integral method. Two geometrical
arrangements were simulated, both use a two coil sys-
tem. The simulation is done with MAFIA [7]. Both
the excitation and the measurement coil are in par-
allel and in parallel to the tissue underneath.

Fig. 1 shows the geometrical arrangement for the
first simulation. In this case the excitation coil is
designed as a gradiometer coil. Therefore two rec-
tangular coils are used. The excitation current runs
clockwise on the right and counter-clockwise on the
left. The measuring coil is simulated as a rectangular
coil, which is parallel to and underneath of the exci-
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Fig. 2. Eddy currents in the tissue. A conductivity of 0.1 1

Ωm

at the left and of 0.08 1

Ωm
at the right are used and a

gradiometer coil as an excitation coil is used.

tation coil. The implementation of the coil is made
of discrete voxels. The cross section of the coil is
2 x 2 voxel. The tissue underneath is divided into
two halves with different conductivities. The advan-
tage of this geometric arrangement is, that the total
flux which passes through the measuring coil is al-
most zero if there is no tissue or homogeneous tissue
underneath. If there is different conductivity under
the left and the right side, there will be eddy currents
of different strengths.

Fig. 2 shows the eddy currents in the tissue block
from above. In this simulation a conductivity of
0.1 1

Ωm
on the left and 0.08 1

Ωm
on the right is

used. Therefore it is clear, that the eddy currents
are higher in the area with low resistance. Because
of Lenz’s law these eddy currents will effect the exci-
tation field. Because the tissue is divided, an asym-
metrical shielding will take place.

Fig. 3 shows the second geometrical arrangement
used. Here the excitation coil is simulated as a rec-
tangular coil. The measuring coil is simulated in the
shape of an eight, which lies in between the exci-
tation coil and the tissue block. Because the eight

Fig. 3. Arrangement of the coil system and the tissue block.
The excitation coil is simulated as a rectangular coil, the
measurement coil is parallel underneath in the shape of
an eight. The tissue is divided into two halves.

Fig. 4. Eddy currents in the tissue. A conductivity of 0.1 1

Ωm

at the left and of 0.08 1

Ωm
at the right are used and a

rectangular coil as an excitation coil is used.

needs to lay plain, the measuring coil was simulated
as filaments instead of discrete voxels.

Fig. 4 shows the eddy currents in the tissue block
from above. Also in this simulation a conductivity
of 0.1 1

Ωm
on the left and 0.08 1

Ωm
on the right is

used. As before it is clear that the eddy currents have
a different shape in the area with low resistance as
compared to the other side.

In practice the induced voltage is measured. The
measured current Imeas and the measured voltage
Umeas can be calculated from the fields.

Umeas =

∫
~E∗~ds (1)

Imeas =

∮
~H∗ ~ds (2)

Here ~E∗ is the electric field and ~H∗ the magnetic
field. Both are solved in frequency domain and there-
fore are complex values.

III. Results

The following results were achieved with a simu-
lation using an excitation current of 1 A and a fre-
quency of 500 kHz. In this simulation the distance
of the measuring and the excitation coil was varied.
Because constant eddy currents are desired, the dis-
tance of the exciting coil and the tissue was held

awidth

0.4 alength

x

y alength

Fig. 5. Geometrical arrangement of the measuring coil in the
shape of an eight.



0

5e-08

1e-07

1.5e-07

2e-07

2.5e-07

0.0025 0.003 0.0035 0.004 0.0045 0.005

m
ag

ni
tu

de
 v

ol
ta

ge
 [V

]

distance of coil [m]

cond 0.08
cond 1

cond 10
cond 100

Fig. 6. Magnitude of the voltage in dependence on the dis-
tance from the measuring coil to the excitation coil. The
conductivity was varied from 0.08 1

Ωm
to 100 1

Ωm
on the

left and a conductivity of 0.1 1

Ωm
on the right was used.

A gradiometer coil is used as an excitation coil.

constant at 6 mm. For the rectangular a geometry
of coil 10 x 5 mm is used. The gradiometer coil was
simulated with two coils and each coil has a size of
4 x 5 mm. When the gradiometer coil is in the shape
of an eight the geometric values of Fig. 5 are used.
Here alength is 10 mm and awidth 5 mm. The mesh
has a higher resolution in the area of the coils.

Fig. 6 and Fig. 7 show the magnitude of the volta-
ge when a gradiometer coil is used as an excitation
coil. Fig. 6 shows tissues with high conductivity to
demonstrate the principle and Fig. 7 uses physiolo-
gical values. In this simulation the distance of the
measuring and the excitation coil was varied. The
conductivity on the left side was varied from 0.08 1

Ωm

to 100 1

Ωm
. The right conductivity was held constant

at 0.1 1

Ωm
. So a conductivity step was realized in the

contact area. Fig. 6 shows that there is a difference
in the signal, and the difference is greater if the mea-

0

2e-10

4e-10

6e-10

8e-10

1e-09

1.2e-09

1.4e-09

1.6e-09

1.8e-09

2e-09

0.0025 0.003 0.0035 0.004 0.0045 0.005

m
ag

ni
tu

de
 v

ol
ta

ge
 [V

]

distance of coil [m]

cond 0.08
cond 1

Fig. 7. Magnitude of the voltage in dependence on the dis-
tance from the measuring coil to the excitation coil. The
conductivity was set at 0.08 1

Ωm
and 1 1

Ωm
on the left

and a conductivity of 0.1 1

Ωm
on the right was used. A

gradiometer coil is used as an excitation coil.
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Fig. 8. Magnitude of the voltage in dependence on the dis-
tance from the measuring coil to the excitation coil. The
conductivity was varied from 0.08 1

Ωm
to 100 1

Ωm
on the

left side and a conductivity of 0.1 1

Ωm
on the right was

used. A rectangular coil is used as an excitation coil.

suring coil is located nearer to the tissue. This makes
sense, because the coupling is higher, if it is nearer.
Tests with a geometry without a tissue block or with
a homogeneous tissue result in a voltage Umeas of
1e−14 V.

Fig. 8 and Fig. 9 show the magnitude of the in-
duced voltage when a rectangular coil is used as an
excitation coil. Fig. 8 shows cases with a high con-
ductivity step to demonstrate the principle and Fig. 9
uses physiological values. The same conductivity va-
lues as before are used. The simulation without a
tissue block or with homogeneous tissue results in a
signal of the same order of magnitude as before.

If the two geometrical arrangements are compared,
Fig. 6 and Fig. 8 present the same sensitivity but the
ascending slope in Fig. 8 is higher and the distance
plays a greater role.

The second important aspect is the geometrical
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Fig. 9. Magnitude of the voltage in dependence on the dis-
tance from the measuring coil to the excitation coil. The
conductivity was set at 0.08 1

Ωm
and 1 1

Ωm
on the left

and a conductivity of 0.1 1

Ωm
on the right was used. A

rectangular coil is used as an excitation coil.



Fig. 10. Eddy currents in the tissue. A conductivity of 0.1 1

Ωm

at the left and of 0.08 1

Ωm
at the right are used and a

gradiometer coil as an excitation coil is used.

arrangement of the eddy currents. In Fig. 2 a grea-
ter density and a compact arrangement is obtained.
Fig. 10 shows the magnitude of the current in the
tissue. The tissue block is cut in the middle and the
two sides with different conductivities can be seen.
A conductivity of 0.1 1

Ωm
at the left and of 0.08 1

Ωm

at the right are used and a rectangular coil as an ex-
citation coil is used. The scale of the currents value
ranges from 0 to 5e-3 A.

Fig. 4 shows an extensive spread of eddy currents.
Fig. 11 shows as before the magnitude of the currents
in the tissue. The same conductivities were used as
before, only a rectangular coil as an excitation coil is
used.

Fig. 11 and Fig. 10 also show the difference in de-
epness of the eddy currents in the tissue. If the con-
ductivity gradient is higher the shape changes extre-
mely and the currents mostly flow in one side.

Fig. 11. Eddy currents in the tissue. A conductivity of 0.1 1

Ωm

at the left and of 0.08 1

Ωm
at the right are used and a

rectangular coil as an excitation coil is used.

IV. Discussion

The non-contact measurement of biological impe-
dances is based on the measurement of small changes
in the magnetic field ~H. These changes creat a small
signal in the detector coil. Therefore a high resolu-
tion must be used. To find an absolute value of the
conductivity the exact geometry must be known. If
the gradient of conductivity is to be determined the
measuring sensor can be more sensitive, because the
signal start from zero.

V. Conclusion

The numerical simulation confirmed the expected
result. A step of 0.02 1

Ωm
in the tissue below the sen-

sor results in a measurable signal. The signal is hig-
her, if the sensor is nearer to the tissue. If the two ar-
rangements are compared, the simulation shows that
both result in a signal of the same order of magni-
tude. The main difference is the geometrical arran-
gement of the eddy currents. So a special sensor can
be designed for a specific region of interest.
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